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SUMMARY ?;: modified form of AR, W/cm-sec 

The anomalous behavior of t h e  thermal conductiv- 
i t y  of f ive  gases, carbon dioxide, argon, nitrogen, 
oxygen, and methane has been investigated using the 
theore t ica l  approach of Brokaw and. t h e  equation of 
s t a t e  given b y  Bender. The analysis presented herein 
properly describes t h e  trends i n  t h e  da ta  and i n  gen- 
e r a l  i s  i n  good agreement w i t h  t h e  da ta  for 
1.1. The theory f a l l s  10 t o  15 percent above the 
da ta  at higher dens i t ies  and appears about 10 percent 
high i n  the peripheral regions. The r e s u l t s  seem ad- 
quate for engineering calculat ions and useful  i n  es- 
tabl ishing the thermal conductivity behavior of 
f l u i d s  for which no da ta  have yet  been taken. 

NOMENCLATURE 

PIPc < 

cPO 

n 

P 

R 

T 

XP 

Y 

2 

A 

AR 

constants i n  Eq. (15) 

specif ic  heat at constant pressure, 
Jlgm-K 

spec i f ic  heat a t  "zero" pressure, J/ 

"reacting" spec i f ic  heat, J/gm-K 

l e v e l  adjustment constant 

s e l f  diefusion coeff ic ient ,  cmz/sec 

binary diffusion coeff ic ient ,  cm2/sec 

molecular weight, gm/gm-mole 

number of monomers 

pressure, MN/m 

gas constant, J/D-K 

temperature, K 

parameter defined by Eq. (12) 

parameter defined by Eq. (11) 

compressibility 

thermal conductivity, W/cm-sec 

contribution t o  thermal conductivity due 

gm-K 

2 

t o  dissociation, W/cm-sec 

frozen thermal conductivity, W/cm-sec 

thermal conductivity a t  "zero" density, 
W/cm-sec 

viscosity,  gm/cm-sec 

a function of density, W/cm-sec 

density, gm/cm3 

diameter of the molecule, Angstroms 

co l l i s ion  in tegra l  - s e l f  diffusion 

co l l i s ion  in tegra l  - viscos i ty  

X1 monomer i n  t h e  c l u s t e r  

x, monomer 

Subscripts: 

C c r i t i c a l  

pseudo a representative value 

COZ carbon dioxide 

N2 nitrogen 

AR argon 

CR4 methane 

oxygen O2 

D!iTRODUCTION 

During the  past  decade, the debate on the  exist-  
ence of a "spike" i n  the  thermal conductivity a t  t h e  
thermodynamic c r i t i c a l  point has flourished. One of 
the  earlier invest igators  t o  note this anomalous be- 
havior w a s  Guildner (1). 
ce l l ,  he found a marked increase i n  t h e  thermal con- 
duc t iv i ty  of  carbon dioxide near i t s  c r i t i c a l  point. 
H i s  conductivity da ta  f o r  selected isotherms, when 
plot ted versus density, a re  near ly  symmetrical about 
the  c r i t i c a l  density with some addi t ional  increase a t  
the lower densi t ies .  
thermal conductivity t o  be extremely la rge  I f  not of 
i n f i n i t e  value a t  t h e  c r i t i c a l  point. 

Using a concentric cylinder 

Guildner (1) also suggested 
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Sengers (2, 3, 4) refined t h e  experimental pro- 
cedure. Using a para l le l  p la te  c e l l  he acquired some 
excellent thermal conductivity da ta  i n  the near c r i t -  
i c a l  region f o r  carbon dioxide. He took great  care 
t o  minimize c e l l  convection and through careful  anal- 
ysis was  able t o  show it t o  be negligible.  In gen- 
eral ,  Sengers' peak conductivit ies a r e  less than 
Guildner's f o r  equivalent isotherms, perhaps indica- 
t i n g  some undetected convection e f fec ts  i n  Guildner's 
data. While some convection w i l l  probably be present 
i n  measurements using cyl indrical  ce l l s ,  Bailey (5) 
took near c r i t i c a l  argon da ta  i n  both t h e  horizontal  
and v e r t i c a l  posit ions without any noticeable gravi- 
t a t i o n a l  effects .  

Although t h e  existence of the  "spike" has been 
verified,  procedures t o  predict  this anomaly f o r  
various f l u i d s  a re  lacking. Herein we w i l l  combine 
the  equation of s t a t e  of Bender, Ref. 6, the  theo- 
r e t i c a l  approach of Brokaw, Ref. 7, the  excellent 
carbon dioxide da ta  of Sengers, Ref. 2, 3, 4, and 
other da ta  t o  formulate a technique t o  predict  the 
anomalous behavior of the  thermal conductivity i n  the  
near c r i t i c a l  region, f o r  reduced densi t ies  i n  the 
range 0.6 < p/pc < 1.5. 

It should be noted t h a t  Benders s t a t e  equation 
Ref. 6, i s  analyt ic  a t  the  c r i t i c a l  point. Thus i n  
principle one should not expect t o  obtain a complete- 
l y  rigorous mathematical discussions of the anomaly 
which appeaxs t o  be a mathematical s ingular i ty  ( 2 ) .  
However this does not seem t o  be of great  importance 
f o r  engineering applications. 

THEcalETICAL BACKGROUND 

Brokaw's Analysis and Modifications 

Brokaw, Ref .  7, assumed t h a t  the  neax c r i t i c a l  
thermal conductivity could be described i n  terms of 
a reacting gas. 
ex is t s  a spectrum of c lus te r  sizes,  f o r  simplicity,  
the  gas w a s  assumed t o  consis t  of a monomer and a 
s iugle  large c l u s t e r  of n - monomers, i . e .  

While he recognized t h a t  there  

nX1 t Xn (1) 

Based on the success of Brokaw's theore t ica l  analysis 
i n  predicting the  thermal conductivity of the  
N204%2NO2 system, Ref. 8, this technique seems t o  
be a sound approach. 
volved, Brokaw represents the  thermal conductivity 
as, 

While the theory i s  ra ther  in -  

The "reacting" specif ic  heat C, i n  Eq. (4)  i s  
defined as an excess specif ic  heat 

(5) 

and C 1  i s  a leve l  adjustment constant. Th i s  con- 
s tan t  i s  determined by matching the  theory t o  a s ingle  
experimental da ta  point. Once C 1  i s  determined, t h e  
thermal conductivity values f o r  the  e n t i r e  region can 
be found. 

D1 'is t h e  se l f  diffusion coeff ic ient  and. i s  
given as 

where 

( 7 )  

can be used t o  f ind 
pelf diffusion coeff ic ient  (Dh/D1) was argued by 
Brokaw, using scaling rules,  t o  be of the  form 

D1. The r a t i o  of the  binary t o  

where the constant 2 . 1  i s  related t o  the geometry and 
densi ty  of the  c lus te r  and determined by Brokaw, 
Ref. 7, using aP/apk, as  determined by Sengers t o  
give a good f i t  t o  t e experimental carbon dioxide 
da ta  of Refs. 2, 3, 4. Herein, it w a s  found most ex- 
pedient t o  r e t a i n  the  2 , 1  value of Brokaw and adjust  
the leve l  f o r  each f l u i d  through C 1 ,  (Eq. (4 ) ) .  

The number of monomers i n  a cluster ,  n, was given 
by Brokaw and s l i g h t l y  modified herein: 

The absolute value was used t o  expedite computing 
i n  t h e  peripheral  regions when the  symmetry constraint  
was not used. More properly, n should approach 1 
and the  reaction contribution approaches zero, i n  
these regions. 

where % 
the  res t ;  i.e. t h e  thermal conductivity at "zero" 
densi ty  
where 

i s  the  sum of the  contribution due t o  d is -  
, sociation and diffusion of the  clusters ,  and AF is 

and t h e  densi ty  e f f e c t  contribution 

(3) 

i s  a function of densi ty  and l$ depends only on 
temperature; t h e  form of 
f o r  the f lu ids  considered. 

f ( p )  w a s  takeh from Ref. 9 

The reacting contribution as defined herein i s  

W e  found by observation, t h a t  the da ta  of 
Sengers, Refs. 2, 3, 4, possessed a high degree of 
symmetry about p/pc = 1 f o r  reduced densi t ies  i n  
the  range 0.6 < p/pc < 1.5. Guildner 's  e a r l i e r  da ta  
(1) a l s o  ref lected t h i s  symmetry. 
t o  neglect the s l i g h t  asymmetry at lower densi ty  
leve ls  and f o r  this prediction t o  define a pseudo 
value of densi ty  f o r  1. < p/pc < 1.5 as 

We, then, decided 

Ppseudo = - P 

And since the  computations a re  along an isotherm 
(isobar f o r  argon) such a combination of (ppseudo, T) 
gives a complete symmetry with respect t o  
thus Eq. (4)  when evaluated a t  ( p  scud,,, T)  yields 
symmetric resu l t s .  

p/pc = 1; 

For example, $he values of A$ 

2 



at p/p = 1.2 with the  symmetry constraint  
Eq. (107, are  ident ica l  t o  the  values of h;l+' at 
p/pc = 0.8 because 

(7, T) = (0.8, T) 

SENGEFS-KEYES ANALYSIS 

Recently, Sengers and Keyes, Ref. 10, devised a 
scaling procedure f o r  determining the  near c r i t i c a l  
thermal conductivity of carbon dioxide. The essence 
of t h e i r  work i s  i l l u s t r a t e d  i n  Fig. 1, taken from 
Ref. 10, where the  da ta  were correlated using the 
parametric grouping: 

35 

Using Fig. 1 and Eqs. (11) and (12), one f inds 
t h a t  f o r  Xp < 0.4, 

r 

o r  thermal Conductivity i s  a function of p alone. 

For Xp > 3, 

It w a s  found f o r  . 4  I Xp 2 3. the da ta  of Fig. 1 
can be approximated (-3 percent error)  by Eq. (15). 

where A sw 1. and B sw .9. Note t h a t  the exponents 
represent those used t o  parametrize Y and Xp. 

ANALYSIS AND RESWS 

Carbon Dioxide 

The thermal conductivity of carbon dioxide has 
been careful ly  assessed by Sengers, Ref. 2, 3, 4. 
Fig. 2 i l l u s t r a t e s  the  use of Bender's equation of 
s ta te ,  Ref. 9, ( f o r  derived properties,  see Ref. 11) 
and Brokaw's theore t ica l  prediction of the  anomalous 

behavior, Ref, 7, f o r  selected isotherms. The 
305.23t isotherm i s  compared t o  tine data  of Sengers, 
Refs. 2, 3, 4; as can be seen i n  Fig. 3, t h e  da ta  and 
theory agree qui te  well  f o r  p/p < .85 but  the  
theory i s  about 18 percent high For p/pc = 1.4. The 
important thing t o  note here i s  that  while the  pre- . 
dic t ion  does not precisely match t h e  da ta  t h e  general  
t rends are  i n  good agreement. 

In order t o  obtain b e t t e r  agreement between the  
da ta  and the  theore t ica l  prediction, the  l e v e l  w a s  
adjusted' t o  f i t  the point a t  305.23 K and p/pc = 0.8. 
A t  t h e  same time the  symmetry condition, discussed i n  
the  Theoretical  Section, was invoked and the  constant 
C1 i n  Eq. (4) was found t o  be 1.15, i .e. ,  

A = % i- 1.15 
co2 

In Fig. 3 the thermal conductivity f o r  the 
305.23 K isotherm, computed using Eq. (E), i s  again 
compared t o  the  data of Sengers, Refs. 2, 3, 4. The 
r e s u l t s  again indicate  good agreement for p/p < 1.1, 
but  t h e  theory i s  abcmt 10 percent high f o r  
1.4. 

pypc sw 

I n  Fig. 4, the computed thermal conductivity 
using Eq. (16) can be compared t o  the  da ta  of Sengers, 
Refs. 2, 3, 4, f o r  several  selected isotherms. The 
da ta  and theory are i n  good agreement f o r  t h e  304.33 
isotherm but  the  theory i s  about 13  percent high f o r  
the  313.13 K isotherm near p!pc = 1.4. While agree- 
ment seems good near t h e  c r i t i c a l  point, fur ther  de- 
parture seems t o  indicate  t h a t  the  theory w i l l  over- 
predict  the  da ta  by 10 t o  15 percent. However, i n  the  
absence of da ta  o r  as a guide t o  prediction trends, o r  
i n  engineering use, the  e r ror  i s  tolerable.  

In Fig. 5 the thermal conductivity computed 
using Eqs. (llj, (12), and Fig. 7 are  compared t o  the  
da ta  of Sengers Refs. 2, 3, 4, f o r  isotherms. The 
computed values, which are . in  excellent agreement 
w i t h  t h a t  da ta  as presented i n  Ref. 10, are  herein 
15 t o  20 percent above the  data, see Fig. 5. For 
p/p = 1 
abost 20 percent. 
Ref. 6, l i s ts  pc = 0.464 gm/cm2 and Tc = 304.21 K 
f o r  the  c r i t i c a l  constants while Senger (2,3,4,10) 
l i s ts  pc = .467 gm/cm2 and Tc = 304.19 K. Using 
Sengers c r i t i c a l  constants instead of Benders lowers 
the  predicted value by 8 percent. This i l l u s t r a t e s  
the  s e n s i t i v i t y  of the  r e s u l t s  t o  select ion of t h e  
c r i t i c a l  constants. 

and the  304.33 K isotherm, the difference i s  
One must note however, t h a t  Bender 

Thus it appears t h a t  e i ther  technique, Keyes and 
Sengers (10) o r  Brokaw (7) w i l l  adequately describe 
the  near -cr i t i ca l  thermal conductivity of carbon- 
dioxide. The advantage of the  technique of Ref. 10 i s  
t h a t  it does not require a good equation of s t a t e  i n  
order t o  use the  theory. The disadvantage is  its ex- 
treme s e n s i t i v i t y  t o  t h e  select ion of c r i t i c a l  con- 
s tants .  

Nitrogen 

With the f i t  t o  the  carbon dioxide da ta  as  per 
Eq. (E), t h e  question a r i ses  as  t o  how well the  
"theory" w i l l  work f o r  other f lu ids .  In Ref. 12, 
Sengers reanalyzed the nitrogen da ta  of Ziebland and 
Burton, Ref. 13, and based on two neax c r i t i c a l  da ta  

tDue t o  a 0.02 K difference i n  c r i t i c a l  temperatures of Refs. 2 &d 6 the  magnitude of the carbon dioxide 
fsotherms of Ref. 2 were decreased by 0.02 K. 
Ref. 2 f o r  thermal conductivity and Refs. 6 and 11 f o r  PVT and derived properties. 

This permits a more proper comparison between the data  sources,- 
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points estimated the  thermal conductivity curve f o r  
the 133.15 K isotherm. Using the  theory of Brokaw, 
Ref. 7, as modified herein and Bender's equation of 

. s ta te ,  Ref. 6, the  leve l  was adjusted t o  f i t  the  
point as p/pc = 0.97 and T = 133.15 K. The con- 
s tan t  C1 of Eq. (4) w a s  found t o  be 1.35, i .e . ,  

The computation w a s  then completed using Eq. (17) 
along the  e n t i r e  133.15 isotherm and was found t o  
match the other da ta  point at p/p rn 1.49. See 
Fig. 6., The estimated thermal coniuct ivi ty  curve 
given by Sengers, Ref. 12, and the  computed curve a re  
i n  good agreement except f o r  p/pc - 0.6 where the  
theory i s  about 15 percent high. Several other iso- 
therms were computed using Eq. (4),  both below and 
above the  c r i t i c a l  pressure. 
s t ra ted  i n  Fig. 6. 

The unusual behavior of 
conductivity beyond 1.5 p/p, 
t o  errors  i n  t h e  derivative 
tension of the  theory. 

b- 

In Refs. 10, 11, Bailey 

These r e s u l t s  are  i l l u -  

the predicted thermal 

&/a, and an overex- 
i s  believed t o  be due 

presenkd da ta  f o r  the  
thermal conductivity of Argon f o r  several  isobars, 
.(as opposed t o  isotherms). The l e v e l  was again ad- 
justed t o  f i t  t h e  point a t  p/pc ss .65 a t  49.8 kg/ 
cm2 (4.8837 MN/m2) t o  determine the  constant C1 of 
Eq. (4) .  C 1  w a s  found t o  be 1.2, i .e. ,  

As  can be seen i n  Fig. 7, there  i s  a d i s t i n c t  shift 
i n  the  data  of Bailey, Refs. 5, 14, away from 
1 t o  a peak near p/pc ss 1.16. T h i s  shift i s  unex- 
plained. However there  a l so  does appear t o  be a 
small shift i n  the  peak A p  
Eq. (4) f o r  the  50.8 kg/cm 
Fig. 7. Since the  leve l  predicted by the  theory and 
the da ta  a re  i n  good agreement i n  other regions, 
fur ther  modifications were deemed unwarranted i n  view 
of the  unexplained s h i f t  i n  the  thermal conductivity 
data  toward higher p/pc values. 

p/pc = 

as computed from 
(4.9817 MN/m2), see 

The values of thermal conductivity were then 
calculated f o r  several  selected isotherms as shown 
i n  Fig. 8. 

Methane 

The methane thermal conductivity da ta  of 
Sokolova and Golubev, Ref. 15, w a s  most d i f f i c u l t  t o  
analyze. Moreover, the  methane equation of s t a t e  as  
given by Bender, Ref. 6, i s  probably the  l e a s t  well  
behaved, In  t h e  near -cr i t i ca l  region, of the f i v e  
gases correlated by Bender. In this case, the leve l  
was not adjusted t o  f i t  any pmt icu la r  point, but t o  
bes t  represent the  trends of the  210 K and 216.3 K 
isotherms. A s  can be seen i n  Fig. 9, the  210 K iso-  
therm da ta  peaks near 
no apparent reason f o r  this peak t o  occur as  it does 
and is, as of now, unexplained. The 216.3 K iso-  
therm da ta  possess the  more conventional appearance 
and a r e  i n  b e t t e r  agreement with the  trends of both 
the theory and other data, e.g. see Fig. 4. The con- 
s tan t  C1 of Eq. (4) was selected as 2.2. 

p/pc rn 0.7. There seems t o  be 

kH4  = AF f 2.2 (19) 

It i s  apparent from Fig. 9, t h a t  e i t h e r  the da ta  
of Ref. 15 f o r  the 194.85 K isotherm are  too high f o r  
the  p/pc u 1 region o r  the derived properties,  
Ref. 11, are too s m a l l .  Also the  adjusting constant 
(2.2) of Eq. (4) i s  much greater  than f o r  the  other 
gases. 

. 

A s  such it a lso  seems out of l ine.  

Assuming t h a t  Eq. (19) does represent the  b e s t  
f i t  t o  these data, the  conductivity of methane c g  be 
computed. See Fig. 10. In Fig. 10, the  d i p  i n  t h e  
250 K isotherm can bes t  be explained by the  s i g n i f i -  
cant departure from t h e  near c r i t i c a l  region, i . e .  an 
overextension of the theory, and troubles in the de- 
rived properties, Ref. ll. The AF o r  frozen thermal 
conductivity f o r  the 250 K isotherm is included f o r  
comparison; it would seem t h a t  one i s  suf f ic ien t ly  
far from the  c r i t i c a l  point such t h a t  Eq. (19) should 
no longer be applicable. 

Oxygen 

The equation of s t a t e  fo r  oxygen, Ref. 6, i s  
qui te  well  behaved and agrees very well with the r e -  
s u l t s  of Weber, Ref. 16, see a l so  Ref. 11. A s  a re -  
s u l t  the  theory should produce a reasonably good pre- 
d ic t ion  of t h e  thermal conductivity of oxygen. Assum- 
ing the  leve l  adjustment t o  be t h e  same as  f o r  n i t ro-  
gen, 

the  thermal conductivity of oxygen was computed f o r  
selected isotherms as i l l u s t r a t e d  i n  Fig. 11. 

LEVEL ADJUSTMENT CONSTANTP 

While an a p r i o r i  technique t o  predict  the  value 
of C1, Eq. (4), has not yet been established, there  
does appear t o  be a trend with molecular weight as 
seen i n  Fig. 1 2 .  T h i s  tendency t o  deviate with mol- 
ecular weight may be related t o  geometry and densi ty  
of the  monomer which i s  i n  turn  related t o  the  con- 
s t a n t  i n  Eq. (8) and the  number of monomer uni t s  (n) ,  
Eq. (9). 
1 .3  should be used f o r  oxygen. In the absence of 
data, 1.35 w a s  used. Note t h a t  methane does not 
appear t o  follow the trend established by the  other 
gases. 

CONCLUSIONS 

If this trend is  correct,  a value of C 1  = 

The theore t ica l  approach of Brokaw combined with 
an adequate equation of s t a t e  as described by Bender 
can be used t o  predict  the anomalous behavior of t h e  
thermal conductivity i n  the near c r i t i c a l  region f o r  
f i v e  f lu ids :  carbon dioxide, argon, nitrogen, oxygen, 
and methane. In  general the  theore t ica l  prediction as 
described herein i s  10 t o  15 percent higher than the  
da ta  f o r  p/pc = 1.4. The theory f o r  p/pc < 1.1 is  
generally i n  good agreement with t h e  data. 
i s  by far t h e  most questionable of the theore t ica l  
predictions. 

Methane 

In this analysis the  leve l  adjustment constant, 
C1,  i s  determined by matching t h e  theory a t  a s ingle  
data  point. Once C 1  i s  determined, thermal con- 
duc t iv i ty  values f o r  the  e n t i r e  region can be found. 

A trend has been noticed f o r  the  l e v e l  adjusting 
constant with molecular weight. T h i s  e f f e c t  i s  prob- 
ably coupled with Brokaw' s empirical determination of 
a constant which i s  related t o  t h e  geometry, density,  
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and the number of monomer uni ts .  

. 
the  anomaly. 
that it does not  require  an accurate equation of 
s ta te ;  the  disadvantage i s  that it i s  extremely sen- 
si t ive t o  the choice.of the c r i t i c a l  constants. 

The Keyes and Sengers technique also predicts  
The advantage of their technique i s  

It i s  f e l t  that these approaches can be used t o  
predict  t rends aqd give sa t i s fac tory  engineering re- 
s u l t s  Q 
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Figure 3. - Computed thermal conductivity of 
carbon dioxide adjusted for level at plp, = 
0.8 and symmetry in AR, for  the 305.23 K 
isotherm. Data from references 2 to 4. 
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Figure 4. - Comparison of computed thermal 
conductivity of carbon dioxide with the data 
of Sengers (refs. 2 to 4) for selected iso- 
therms. The "frozen" thermal conductivity 
i s  included for comparison (ref. 9). 
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Figure 7. - Comparison of computed thermal conductivity 
of argon with the  data of Bailey (refs. 5 and 14) for two 
isobars (P, = 48.392 Bailey, I?, = 48.014 atm PROGRAM). 
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Figure 8. - Computed thermal conductivity fo r  
argon fo r  a few selected isotherms. 
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Figure 9. - Comparison of computed thermal 
conductivity of methane with the data of 
reference 15 for three isotherms. 

E- t 
T, = 190.77 K 
P, = 4.627 MN/m2 
pc = 0.162 GMlCC 

190.8 

.2  
.6  . 8  1. 0 1.2 1.4 

Figure 10. - Computed thermal conductivity 

PIP, 

for  methane for selected isotherms. 
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